Jacobian Curve for Bitcoin

03.03.2024
Jacobian Curve for Bitcoin

Python code to plot a Jacobian curve:

import numpy as np
import matplotlib.pyplot as plt

def jacobian(x, y, a=1, b=1, c=1, d=1):
    return (y**2 - x**2, 2 * x * y)

x = np.linspace(-3, 3, 1000)
y = np.linspace(-3, 3, 1000)
X, Y = np.meshgrid(x, y)
Z = jacobian(X, Y)

plt.figure()
plt.plot_surface(X, Y, Z, alpha=0.3)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Jacobian Curve')
plt.show()

This code defines a function called jacobian that takes in x and y values and returns the Jacobian matrix. The code then uses np.meshgrid to create a grid of x and y values, and uses jacobian to compute the corresponding z values. Finally, it uses matplotlib.pyplot to plot the resulting surface.

 Jacobian Curve algorithm is used in cryptography to generate elliptic curves that are resistant to attacks such as the discrete logarithm problem.

However, there are other algorithms that can be used to solve the discrete logarithm problem. One such algorithm is the Baby-Step Giant-Step algorithm, which is based on the concept of the Euclidean algorithm. Here’s an example of how to implement this algorithm in Python:

def baby_step_giant_step(g, p, a, b):
    # Calculate g^a mod p
    ga = 1
    for i in range(1, a+1):
        ga = (ga * g) % p

    # Calculate g^b mod p
    gb = 1
    for i in range(1, b+1):
        gb = (gb * g) % p

    # Calculate the greatest common divisor of a and phi(p)
    phi_p = (p-1) * (p-2) // 2
    gcd = a
    for i in range(1, phi_p+1):
        if gcd == 1:
            break
        if a % i == 0 and b % i == 0:
            gcd = i
        a = a // i
        b = b // i

    # Calculate x such that g^x = g^a * g^b^(-1) mod p
    x = 1
    for i in range(phi_p):
        if gcd == i:
            x = (ga * gb^(-1)) % p
            break
        x = (x * g) % p

    return x

In this code, g is the generator of the group, p is the prime modulus, a is the first input to the algorithm, and b is the second input to the algorithm. 


Useful information for enthusiasts:

Contact me via Telegram: @ExploitDarlenePRO