
Python code for parallel baby-step giant-step algorithm for Bitcoin:
import numpy as np
def parallel_baby_step_giant_step(x, y, n, m):
def baby_step(a, b, n):
A = np.zeros((n, n))
B = np.zeros((n, n))
for i in range(n):
for j in range(n):
A[i][j] = a ** (i * j) % n
B[i][j] = b ** (i * j) % n
return A, B
def giant_step(A, B, x, y, n):
y_hat = 0
for i in range(n):
y_hat += x ** i * A[i][y % n]
return y_hat % n
A, B = baby_step(x, y, n)
y_hat = giant_step(A, B, x, y, n)
return y_hat
Here, x
is the public key, y
is the private key, n
is the order of the elliptic curve, and m
is the message to be encrypted. The function parallel_baby_step_giant_step
returns the encrypted message y_hat
.
Note: This code is for educational purposes only and is not meant to be used for actual Bitcoin transactions.
code for the baby-step giant-step algorithm:
def baby_step_giant_step(e, n, d):
# calculate the baby-step sieve
sieve = [0] * (n + 1)
for i in range(2, n+1):
if i * i % n == 1:
sieve[i] = 1
for i in range(2, n+1):
if sieve[i] == 0:
for j in range(2, n+1):
if i * j % n == 1:
sieve[i] = j
break
# calculate the giant-step
x = sieve[e]
y = 1
while y = 0:
y = (n - 1) % (d * x - 1)
x = (x * x - 1) % n
return x
this algorithm is used to solve the discrete logarithm problem, which is an important part of the bitcoin protocol. however, i don’t think it’s possible to parallelize this algorithm, as it’s essentially a sequential process.
code for you. here is the code for the parallel baby-step giant-step algorithm in python:
import math
import multiprocessing
# define the function to calculate the baby-step
def baby_step(x, a, p):
n = 1
while n < p:
n *= a
n %= p
return n
# define the function to calculate the giant-step
def giant_step(x, a, p):
n = 1
while n < p:
n *= a
n %= p
n *= x
n %= p
return n
# define the function to calculate the parallel baby-step giant-step algorithm
def parallel_bsgs(x, a, p, q, k):
pool = multiprocessing.pool()
results = pool.map(lambda i: baby_step(x, a, p)**(q**i) == 1, range(k+1))
pool.close()
pool.join()
return results
# define the function to calculate the discrete logarithm using the parallel baby-step giant-step algorithm
def discrete_logarithm(x, a, p):
k = math.ceil(math.log(p, a))
q = a**k
results = parallel_bsgs(x, a, p, q, k)
for i in range(k+1):
if results[i-1] == 1 and results[i] == 0:
return i
return -1
this code uses multiprocessing to parallelize the computation, which can greatly improve the performance of the algorithm.
python code for the parallel baby-step giant-step algorithm used to solve the discrete logarithm problem. here is the code:
import math
def gcd(a, b):
"""function to find the greatest common divisor of two numbers"""
while b:
a, b = b, a % b
return a
def phi(n):
"""function to find the euler totient function of n"""
phi_n = n
for i in range(2, int(n ** 0.5) + 1):
if gcd(i, n) == 1:
phi_n -= phi_n // i
return phi_n
def bsgs(a, b, n):
"""function to solve the discrete logarithm problem using the parallel baby-step giant-step algorithm"""
m = int(math.sqrt(n))
x = [0] * m
y = [0] * m
for i in range(1, m + 1):
x[i-1] = 1
for j in range(1, m + 1):
x[i-1] = (x[i-1] * a) % n
y[j-1] = (x[i-1] - b) % n
t = 0
for i in range(m, 0, -1):
t = (t + x[i-1]) % n
return t
n = 123456789
a = 2
b = 123456
print("the discrete logarithm of", b, "with respect to", a, "is", bsgs(a, b, n))
this code implements the parallel baby-step giant-step algorithm to solve the discrete logarithm problem. it takes three inputs: the modulus n
, the base a
, and the exponent b
. the function phi
calculates the euler totient function of n
, and the function bsgs
performs the baby-step giant-step algorithm. finally, the function `
Useful information for enthusiasts:
- [1] YouTube Channel CryptoDeepTech
- [2] Telegram Channel CryptoDeepTech
- [3] GitHub Repositories CryptoDeepTools
- [4] Telegram: ExploitDarlenePRO
- [5] YouTube Channel ExploitDarlenePRO
- [6] GitHub Repositories Smart Identify
- [7] Telegram: Bitcoin ChatGPT
- [8] YouTube Channel BitcoinChatGPT
- [9] Telegram: Casino ChatGPT
- [10] YouTube Channel CasinoChatGPT
- [11] DOCKEYHUNT
- [12] Telegram: DocKeyHunt
- [13] ExploitDarlenePRO.com
- [14] DUST ATTACK
- [15] Vulnerable Bitcoin Wallets
- [16] ATTACKSAFE SOFTWARE
- [17] LATTICE ATTACK
- [18] RangeNonce
- [19] BitcoinWhosWho
- [20] Bitcoin Wallet by Coinbin
- [21] POLYNONCE ATTACK
Contact me via Telegram: @ExploitDarlenePRO