
Python code for the Pohlig-Hellman algorithm for Bitcoin:
import hashlib
import math
# Function to calculate the discrete logarithm of x and y modulo p
def discrete_log(x, y, p):
a = 0
b = 1
z = 1
while z = 0:
a = a + b
b = b * x
z = hashlib.sha256(str(b).encode('utf-8')).hexdigest()
z = int(z, 16) % p
return a
# Function to calculate the modular exponentiation of x to the power of y modulo p
def modular_exponentiation(x, y, p):
z = 1
while y > 0:
if y % 2 == 1:
z = z * x % p
x = x * x % p
y = y // 2
return z
# Function to calculate the Pohlig-Hellman algorithm
def pohlig_hellman(x, y, p, q, a, b):
z = 1
for i in range(1, q):
z = z * modular_exponentiation(x, i, p) % p
return discrete_log(y, z, p)
# Example usage:
p = 2**256 - 2**32 + 2**9 - 2**8 + 2**7 - 2**6 + 2**4 - 1
q = 2**256
a = 7
b = 5
x = 2
y = 3
print(pohlig_hellman(x, y, p, q, a, b))
In this example, we set p to the Bitcoin prime number, q to 2^256, a to 7, b to 5, x to 2, and y to 3. We then use the pohlig_hellman function to calculate the discrete logarithm of x and y modulo p.
Python implementation of the Pohlig-Hellman algorithm:
import gmpy2
# Function to compute the discrete logarithm using the Pohlig-Hellman algorithm
def discrete_log(a, p, q):
g = 2
m = q
# Compute the order of 2 modulo q
while (m % 2 == 0):
m //= 2
# Compute the order of 2 modulo p
k = 1
while (gmpy2.is_perfect_power(g, k) == False):
k += 1
# Compute the discrete logarithm
b = 1
for i in range(k):
g = gmpy2.powmod(g, gmpy2.gcd(m, k), p)
x = gmpy2.powmod(g, (m // k) - 1, p)
b = (b * x) % p
m //= k
return b
# Example usage
a = 7
p = 13
q = 11
print("Discrete logarithm of", a, "modulo", p, "is", discrete_log(a, p, q))
In this implementation, we use the GMPY2 library to perform modular arithmetic and perfect power computations. The discrete_log
function takes three arguments: a
is the number whose discrete logarithm we want to compute, p
is the modulus, and q
is a small prime factor of p-1
.
The function first computes the order of 2 modulo q
, which is the smallest positive integer k
such that 2^k ≡ 1 (mod q)
. It then computes the order of 2 modulo p
, which is the smallest positive integer k
such that 2^k ≡ 1 (mod p)
.
The function then uses these orders to compute the discrete logarithm of a
modulo p
using a loop that iterates k
times. At each iteration
Python code for the Pohlig-Hellman algorithm:
import math
# Function to find the discrete logarithm of a number using the Pohlig-Hellman algorithm
def discrete_logarithm(a, p, q):
# Compute the order of the number a modulo p
order = math.ceil(math.log(p-1, 2))
# Compute the prime factorization of p-1
factors = []
i = 2
while i <= p-1:
if p % i == 0:
factors.append(i)
p //= i
else:
i += 1
# Compute the discrete logarithm of a modulo p using the Pohlig-Hellman algorithm
for factor in factors:
k = 1
while (k * factor) % order = 1:
k += 1
b = math.ceil(math.log(k, 2))
m = math.ceil(b / math.log(2, factor))
for i in range(m):
x = math.pow(a, (k**(i+1) - 1) // (k - 1), p)
y = math.pow(q, i, p)
if x == y:
return i * factor
return -1
In this code, a
is the number for which we want to find the discrete logarithm modulo p
, and q
is a random number between 1 and p-1
. The function uses the Pohlig-Hellman algorithm to find the discrete logarithm of a
modulo p
.
The function first computes the order of a
modulo p
, which is the smallest positive integer k
such that a^k mod p = 1
. It then computes the prime factorization of p-1
, and iterates over each factor. For each factor, it computes the discrete logarithm of a
modulo p
using the Pohlig-Hellman algorithm. If a discrete log
Python code for the Pohlig-Hellman algorithm:
import math
def discrete_logarithm(a, b, p):
n = int(math.log(p, 2))
phi = p - 1
g = 2
m = 1
while m < n:
g = gcd(g, phi)
if g > 1:
m = m + 1
phi = phi // g
else:
break
g = 2
m = 1
while m < n:
g = gcd(g, phi)
if g > 1:
m = m + 1
phi = phi // g
else:
break
x = 0
k = 0
while k < n:
if gcd(a, p) == 1:
x = x + (b**(2**k) * ((g**(2**k)) % p)) % phi
g = g * g
k = k + 1
x = x % phi
return x
def gcd(a, b):
while b = 0:
a, b = b, a % b
return a
This code implements the Pohlig-Hellman algorithm to solve the discrete logarithm problem. It takes three arguments: a, b, and p. a is the number for which we want to find the logarithm, b is a number whose logarithm is known, and p is a prime number.
The algorithm works by first finding the smallest value of n such that 2^n is greater than or equal to p. It then uses the Pohlig-Hellman algorithm to find the discrete logarithm of a with respect to b.
I hope this helps! Let me know if you have any questions.
Useful information for enthusiasts:
- [1] YouTube Channel CryptoDeepTech
- [2] Telegram Channel CryptoDeepTech
- [3] GitHub Repositories CryptoDeepTools
- [4] Telegram: ExploitDarlenePRO
- [5] YouTube Channel ExploitDarlenePRO
- [6] GitHub Repositories Smart Identify
- [7] Telegram: Bitcoin ChatGPT
- [8] YouTube Channel BitcoinChatGPT
- [9] Telegram: Casino ChatGPT
- [10] YouTube Channel CasinoChatGPT
- [11] DOCKEYHUNT
- [12] Telegram: DocKeyHunt
- [13] ExploitDarlenePRO.com
- [14] DUST ATTACK
- [15] Vulnerable Bitcoin Wallets
- [16] ATTACKSAFE SOFTWARE
- [17] LATTICE ATTACK
- [18] RangeNonce
- [19] BitcoinWhosWho
- [20] Bitcoin Wallet by Coinbin
- [21] POLYNONCE ATTACK
Contact me via Telegram: @ExploitDarlenePRO