
This script provides a starting point for implementing elliptic curve point multiplication in CUDA. To achieve high performance, additional optimizations and use of specialized libraries, if available, will be required.
Python script:
import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule
import numpy as np
# Определение параметров кривой secp256k1
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0x0000000000000000000000000000000000000000000000000000000000000000
b = 0x0000000000000000000000000000000000000000000000000000000000000007
Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
Gy = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
# CUDA Kernel для сложения точек
mod = SourceModule("""
__device__
int add_mod(int a, int b, int p) {
int sum = a + b;
if (sum >= p) {
sum -= p;
}
return sum;
}
__device__
int sub_mod(int a, int b, int p) {
int diff = a - b;
if (diff < 0) {
diff += p;
}
return diff;
}
__device__
int mul_mod(int a, int b, int p) {
return (int)(((long long)a * b) % p);
}
__device__
int pow_mod(int base, int exp, int p) {
int res = 1;
base %= p;
while (exp > 0) {
if (exp % 2 == 1) res = mul_mod(res, base, p);
base = mul_mod(base, base, p);
exp /= 2;
}
return res;
}
__device__
int inv_mod(int a, int p) {
return pow_mod(a, p - 2, p);
}
__device__
void point_add(int x1, int y1, int x2, int y2, int p, int a,
int *x3, int *y3) {
if (x1 == x2 && y1 == y2) {
// Удвоение точки
int slope = mul_mod(sub_mod(mul_mod(3, pow_mod(x1, 2, p), p), a, p),
inv_mod(mul_mod(2, y1, p), p), p);
*x3 = sub_mod(sub_mod(mul_mod(slope, slope, p), mul_mod(2, x1, p), p),a,p);
*y3 = sub_mod(mul_mod(slope, sub_mod(x1, *x3, p), p), y1, p);
} else {
// Сложение точек
int slope = mul_mod(sub_mod(y2, y1, p), inv_mod(sub_mod(x2, x1, p), p), p);
*x3 = sub_mod(sub_mod(mul_mod(slope, slope, p), x1, p), x2, p);
*y3 = sub_mod(mul_mod(slope, sub_mod(x1, *x3, p), p), y1, p);
}
}
__global__
void scalar_multiply(int scalar, int Gx, int Gy, int p, int a,
int *resultX, int *resultY) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int x = Gx;
int y = Gy;
int x_temp, y_temp;
for (int i = 1; i < scalar; i++) {
point_add(x, y, Gx, Gy, p, a, &x_temp, &y_temp);
x = x_temp;
y = y_temp;
}
resultX[idx] = x;
resultY[idx] = y;
}
""")
# Получаем функцию из скомпилированного модуля
scalar_multiply = mod.get_function("scalar_multiply")
def multiply_point(scalar):
"""
Умножает базовую точку G на скаляр с использованием CUDA.
"""
# Выделяем память на GPU
result_x = np.zeros((1), dtype=np.int32)
result_y = np.zeros((1), dtype=np.int32)
result_x_gpu = cuda.mem_alloc(result_x.nbytes)
result_y_gpu = cuda.mem_alloc(result_y.nbytes)
# Передаем данные на GPU
cuda.memcpy_htod(result_x_gpu, result_x)
cuda.memcpy_htod(result_y_gpu, result_y)
# Запускаем CUDA kernel
block_size = 1
grid_size = 1
scalar_multiply(np.int32(scalar), np.int32(Gx), np.int32(Gy), np.int32(p), np.int32(a),
result_x_gpu, result_y_gpu,
block=(block_size, 1, 1), grid=(grid_size, 1, 1))
# Получаем результат с GPU
cuda.memcpy_dtoh(result_x, result_x_gpu)
cuda.memcpy_dtoh(result_y, result_y_gpu)
return result_x[0], result_y[0]
# Пример использования
scalar = 2 # Пример скаляра
result_x, result_y = multiply_point(scalar)
print(f"Результат умножения точки на скаляр {scalar}:")
print(f"x: {result_x}")
print(f"y: {result_y}")
Code explanation:
- Import libraries:
pycuda.driver
: For low-level control of CUDA.pycuda.autoinit
: To automatically initialize CUDA.pycuda.compiler
: To compile CUDA code from strings.numpy
: For working with data arrays.
- Definition of secp256k1 curve parameters:
p
: A prime number that determines the order of the field.a
,b
: Coefficients of the equation of an elliptic curve.Gx
,Gy
: Coordinates of the base point G.
- CUDA Kernel:
- Defined as a string using
SourceModule
. - Functions
add_mod
,sub_mod
,mul_mod
,pow_mod
,inv_mod
: implement the modular arithmetic needed for operations on an elliptic curve. - Function
point_add
: implements addition of points on an elliptic curve. - Function
scalar_multiply
: A CUDA kernel that performs point-scalar multiplication. It adds a point G to itself sequentiallyscalar
times.
- Defined as a string using
- Function
multiply_point
:- Allocates memory on the GPU to store the results (x and y coordinates).
- Transfers data to the GPU.
- Starts the CUDA kernel using
scalar_multiply
. - Gets results from the GPU and returns them.
- Example of use:
- Sets the scalar
scalar
. - Calls a function
multiply_point
to multiply the base point by a scalar. - Displays results.
- Sets the scalar
Notes:
- This code provides a basic implementation of secp256k1 elliptic curve point multiplication in CUDA.
- For real applications, optimizations such as using more efficient algorithms (e.g. double-and-add), more parallelism, and memory access optimizations need to be considered.
- The code uses sequential addition of points, which is not optimal for large scalars. It is recommended to use the double-and-add algorithm.
- Optimization of CUDA code can include the use of shared memory, reducing thread divergence, and other methods.
- This implementation assumes that you have the CUDA toolkit and PyCUDA installed and configured correctly.