Python script implementing secp256k1 elliptic curve point multiplication on CUDA.

17.03.2025
Python script implementing secp256k1 elliptic curve point multiplication on CUDA.

This script provides a starting point for implementing elliptic curve point multiplication in CUDA. To achieve high performance, additional optimizations and use of specialized libraries, if available, will be required.

Python script:

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule
import numpy as np

# Определение параметров кривой secp256k1
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0x0000000000000000000000000000000000000000000000000000000000000000
b = 0x0000000000000000000000000000000000000000000000000000000000000007
Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
Gy = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8

# CUDA Kernel для сложения точек
mod = SourceModule("""
__device__
int add_mod(int a, int b, int p) {
int sum = a + b;
if (sum >= p) {
sum -= p;
}
return sum;
}

__device__
int sub_mod(int a, int b, int p) {
int diff = a - b;
if (diff < 0) {
diff += p;
}
return diff;
}

__device__
int mul_mod(int a, int b, int p) {
return (int)(((long long)a * b) % p);
}

__device__
int pow_mod(int base, int exp, int p) {
int res = 1;
base %= p;
while (exp > 0) {
if (exp % 2 == 1) res = mul_mod(res, base, p);
base = mul_mod(base, base, p);
exp /= 2;
}
return res;
}

__device__
int inv_mod(int a, int p) {
return pow_mod(a, p - 2, p);
}

__device__
void point_add(int x1, int y1, int x2, int y2, int p, int a,
int *x3, int *y3) {
if (x1 == x2 && y1 == y2) {
// Удвоение точки
int slope = mul_mod(sub_mod(mul_mod(3, pow_mod(x1, 2, p), p), a, p),
inv_mod(mul_mod(2, y1, p), p), p);
*x3 = sub_mod(sub_mod(mul_mod(slope, slope, p), mul_mod(2, x1, p), p),a,p);
*y3 = sub_mod(mul_mod(slope, sub_mod(x1, *x3, p), p), y1, p);
} else {
// Сложение точек
int slope = mul_mod(sub_mod(y2, y1, p), inv_mod(sub_mod(x2, x1, p), p), p);
*x3 = sub_mod(sub_mod(mul_mod(slope, slope, p), x1, p), x2, p);
*y3 = sub_mod(mul_mod(slope, sub_mod(x1, *x3, p), p), y1, p);
}
}

__global__
void scalar_multiply(int scalar, int Gx, int Gy, int p, int a,
int *resultX, int *resultY) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int x = Gx;
int y = Gy;
int x_temp, y_temp;

for (int i = 1; i < scalar; i++) {
point_add(x, y, Gx, Gy, p, a, &x_temp, &y_temp);
x = x_temp;
y = y_temp;
}

resultX[idx] = x;
resultY[idx] = y;
}
""")

# Получаем функцию из скомпилированного модуля
scalar_multiply = mod.get_function("scalar_multiply")

def multiply_point(scalar):
"""
Умножает базовую точку G на скаляр с использованием CUDA.
"""
# Выделяем память на GPU
result_x = np.zeros((1), dtype=np.int32)
result_y = np.zeros((1), dtype=np.int32)
result_x_gpu = cuda.mem_alloc(result_x.nbytes)
result_y_gpu = cuda.mem_alloc(result_y.nbytes)

# Передаем данные на GPU
cuda.memcpy_htod(result_x_gpu, result_x)
cuda.memcpy_htod(result_y_gpu, result_y)

# Запускаем CUDA kernel
block_size = 1
grid_size = 1
scalar_multiply(np.int32(scalar), np.int32(Gx), np.int32(Gy), np.int32(p), np.int32(a),
result_x_gpu, result_y_gpu,
block=(block_size, 1, 1), grid=(grid_size, 1, 1))

# Получаем результат с GPU
cuda.memcpy_dtoh(result_x, result_x_gpu)
cuda.memcpy_dtoh(result_y, result_y_gpu)

return result_x[0], result_y[0]

# Пример использования
scalar = 2 # Пример скаляра
result_x, result_y = multiply_point(scalar)
print(f"Результат умножения точки на скаляр {scalar}:")
print(f"x: {result_x}")
print(f"y: {result_y}")

Code explanation:

  1. Import libraries:
    • pycuda.driver: For low-level control of CUDA.
    • pycuda.autoinit: To automatically initialize CUDA.
    • pycuda.compiler: To compile CUDA code from strings.
    • numpy: For working with data arrays.
  2. Definition of secp256k1 curve parameters:
    • p: A prime number that determines the order of the field.
    • ab: Coefficients of the equation of an elliptic curve.
    • GxGy: Coordinates of the base point G.
  3. CUDA Kernel:
    • Defined as a string using SourceModule.
    • Functions add_modsub_modmul_modpow_modinv_mod: implement the modular arithmetic needed for operations on an elliptic curve.
    • Function point_add: implements addition of points on an elliptic curve.
    • Function scalar_multiply: A CUDA kernel that performs point-scalar multiplication. It adds a point G to itself sequentially scalartimes.
  4. Function multiply_point:
    • Allocates memory on the GPU to store the results (x and y coordinates).
    • Transfers data to the GPU.
    • Starts the CUDA kernel using scalar_multiply.
    • Gets results from the GPU and returns them.
  5. Example of use:
    • Sets the scalar scalar.
    • Calls a function multiply_pointto multiply the base point by a scalar.
    • Displays results.

Notes:

  • This code provides a basic implementation of secp256k1 elliptic curve point multiplication in CUDA.
  • For real applications, optimizations such as using more efficient algorithms (e.g. double-and-add), more parallelism, and memory access optimizations need to be considered.
  • The code uses sequential addition of points, which is not optimal for large scalars. It is recommended to use the double-and-add algorithm.
  • Optimization of CUDA code can include the use of shared memory, reducing thread divergence, and other methods.
  • This implementation assumes that you have the CUDA toolkit and PyCUDA installed and configured correctly.